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EXECUTIVE SUMMARY 

This technical note describes the Airframe Beam Structural Test (ABST) fixture located in the 
Structures and Materials Laboratory in Building 245 at the FAA William J. Hughes Technical 
Center. The ABST fixture integrates mechanical, hydraulic, control and data-acquisition systems 
enclosed by a portable barrier wall. This new structural test capability was developed in 
collaboration with The Boeing Company and is capable of applying major modes of loading to a 
beam structure representative of a typical wing or stabilizer components. Individual loading modes 
include constant moment, torsion, cantilever shear, and horizontal bending, which can be 
combined to yield complex loading configurations. Loads are applied using four hydraulic 
actuators (50 kip capacity and 12-inch stroke) powered by a 60-GPM hydraulic power unit 
controlled by a MTS Flex TestTM 100 system. A MTS FlexDAC 20 data-acquisition system 
provides 64 channels to collect strain gauges and displacement sensors data and a ARAMIS digital 
image correlation system is used to capture full-field strain and displacement distribution. Several 
non-destructive inspection capabilities are used to monitor damage including Flash 
Thermography, Phased Array, Pulse Echo, Bondmaster, and Eddy Current. The ABST fixture is 
also equipped with several surveillance cameras to monitor real time testing.  
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INTRODUCTION 

Under a Cooperative Research and Development Agreement (07-CRDA-0236), the FAA and The 
Boeing Company have been investigating the safety and structural integrity issues of bonded repair 
technology through test and analysis. Initial focus has been the application of bonded repairs to 
metallic fuselage structure. Follow-on efforts were identified for bonded repairs of thicker 
structures, such as a primary beam structure representative of typical wing or stabilizer 
components that are subjected to much more complex loads.  

To support this effort, a new structural test capability was recently commissioned, namely, the 
Aircraft Beam Structural Test (ABST) fixture. Acceptance testing to demonstrate the full 
functionality of the ABST fixture was completed on May 2017. The fixture is a self-reacting 
structure housed in the new Structures and Materials Lab in Building 245.  

The design, fabrication, and integration of the ABST fixture was a collaborative team effort. The 
Boeing team provided funding, test equipment, and in-kind engineering support whereas the ABST 
fixture was designed by Greg Korkosz. The FAA metal shop team (ANG-E3)—Hank Weber, Kim 
Weber, and Bob Shea—assumed responsibility and took the lead in the mechanical fixture 
fabrication phase. The full system assembly and integration of the mechanical test fixture, the 
hydraulic system, and the control and data-acquisition (DAQ) system was accomplished by the 
Diakon support team: lead test engineers, Reewanshu Chadha and Yongzhe Tian, and technicians 
Thuan Nguyen, Pat Ray, Kelsey Warfle, and Jeff Panco, and Drexel graduate student, Ryan Neel.  

The ABST fixture is currently being used to support a multi-year, multi-phased research program 
assessing bonded repairs to composite panels representative of transport airplane wing structure. 
The initial baseline testing of this program characterized the material response of composite panels 
in the unnotched pristine and open hole configurations under constant moment loading. This 
baseline information provided verification of the test fixture loading and validation of analysis 
models, and an initial reference point for non-destructive inspections (NDI) and structural health 
monitoring systems. Follow on phases of this program will support bonded repair size limit 
(BRSL) studies and methods used to predict the limit load residual strength for a failed scarfed 
repair in solid composite laminates and honeycomb panels.  
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DESCRIPTION OF AIRFRAME BEAM STRUCTURAL TEST (ABST) FIXTURE 

Setup of the ABST fixture began in October 2016 and the functionality was demonstrated with an 
acceptance test in May 2017. Major upgrades were completed in August 2018 to the ABST fixture 
controller, DAQ, and hydraulic systems, which provided a more integrated test arrangement, 
efficient operation, and environmentally friendly environment. The ABST fixture consists of: 

1. Mechanical system
2. Hydraulic system
3. Control and DAQ systems and monitoring center
4. Portable barriers surrounding the ABST support system

A summary of the major components of the control, DAQ, and hydraulic systems is provided in 
table 1. The complete floorplan of the ABST fixture is shown in figure 1. The figure shows all the 
sections of the ABST fixture with the personnel protective equipment and a portable gantry for 
lifting heavy items. All the major sections of the ABST fixture are shown in figure 2 and the details 
of these sections are described in this section. 

Table 1. Equipment List for the ABST Fixture 

Component Description 

Load Control and DAQ Systems 

MTS FlexTestTM 100 
MTS FlexDACTM 20, 64 channel 
MOOG SmarTEST - CDS27634* 
VTI - EX1629, 48 channel* 

Load Cells Four, 50-KIP capacity 
One, 5-KIP capacity* 

Servo Valves and Blocks Four, 15-Gal/min capacity 

Actuators 

Four, 2–6-inch bore, 12-inch stroke 
capacity, 50-K capacity 
Two, 2–3 inch bore, 36-inch stroke 
capacity, 50-K capacity* 
One, 1–2-inch bore, 12-inch stroke 
capacity, 5K capacity* 

Hydraulic Power Unit 

MTS SILENTFLOTM 515 (320-gal 
reservoir, 60 gal/min, 3000 PSI 
capacity) 
Portable Hydraulic Pump (100-gal 
reservoir, 50 gal/min, 3000 PSI 
capacity)* 

Digital Image Correlation (DIC) Camera 
system 

ARAMIS System for full-field strain 
and displacement data acquisition. 

*Equipment is currently not being used in the ABST fixture.
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Figure 1. Layout of the ABST facility showing the ABST fixture, hydraulic components, 
control and DAQ systems and monitoring center, portable barriers, gantry crane, and all 

the safety equipment.  
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Figure 2. Major sections of ABST fixture: a) mechanical system, b) hydraulic system, c) 
control and DAQ systems and monitoring center, and d) portable barriers surrounding the 

ABST fixture 

MECHANICAL SYSTEM 

The ABST fixture is a self-reacting fixture used to test a primary beam structure representative of 
a typical wing or stabilizer components, subjected to complex loading scenarios. The development 
of the ABST mechanical system is described here. 

MECHANICAL SYSTEM DEVELOPMENT 

The fabrication and machining of all the parts of the ABST mechanical system was outsourced to 
an external vendor. The majority of these parts required size and position tolerance of 0.005 inch. 
The welding of the subassemblies and part of the machining work was conducted by the FAA 
machine shop and the system was assembled by laboratory personnel. The complete mechanical 
system is composed of several machined parts and welded subassemblies. The list of these 
subassemblies and parts are shown in figure 3. Overall, the ABST mechanical system can be 
divided into three major modules. These are: 
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1. Reaction Module 
2. Loading Module 
3. Wingbox 

REACTION MODULE: The reaction module of the mechanical system is the section that reacts 
to the applied loads. It consists of several subassemblies (SA) and parts (P) such as base assembly 
(SA8), riser assembly (SA2), reaction head (SA3), and reactor clamp (P2). These subassemblies 
and parts are shown in figure 4. The detail drawings of all the parts of the subassemblies are 
provided in appendix A. 

LOADING MODULE: The loading module of the ABST mechanical system is the section that 
applies load to the wingbox. It consists of loading head (SA5), four actuators (SA1), hoodoly 
(SA6), wedge mount assembly (SA7), jack support beams (P3 and P4), and hoodoly clamps (P1). 
These subassemblies and parts are shown in figure 5. The detail drawings of all the parts of the 
subassemblies are provided in appendix A. Each actuator has 50-kip capacity and 12-inch stroke 
and are mounted with a ± 50-kip capacity load cells. The two inside actuators are mounted 
vertically and attached to the hoodoly via pins. The two outside actuators are mounted at a 45˚ 
angle and attached to the loading head via pins.  

 

Figure 3. ABST mechanical system 
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Figure 4. The subassemblies and parts that form the reaction module of the ABST 
mechanical system: a) base assembly (SA8), b) riser assembly (SA2), c) reaction head 

(SA3), and d) reactor clamp (P2) 
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Figure 5. The subassemblies and parts that form the loading module of the ABST Fixture: 
a) loading head (SA5), b) actuators (SA1), c) hoodoly (SA6), d) wedge mount assembly 

(SA7), e) jack support beams (P3 and P4), and f) hoodoly clamps (P1) 

WINGBOX: The third section is the wingbox (SA4), which is between the reaction head and 
loading head. The wingbox is the primary testing section of the ABST mechanical system and 
comprises the test panel, two pultrusion fiberglass side walls, and a steel bottom plate, as shown 
in figure 6. The pultrusion fiberglass side walls allow for efficient load transfer to the test panel. 
The bottom steel plate of the wingbox is attached to the reaction module and loading module via 
splice plates with 42 (0.5 inch diameter) bolts at both axial ends. On top of the transverse sides of 
the bottom plates, fiberglass channels are attached by 18 (3/8 inch diameter) bolts. A test panel of 
40-by-24 inches with a maximum thickness of 1 inch can be fitted in the wingbox. Figure 7 shows 
the location of the test panel and engineering drawing of a test panel. Similar to the bottom steel 
plate, the test panel is attached to the reaction head and loading head via splice plates with 42 (0.5 
inch diameter) bolts at each end and to the fiberglass channels on both transverse sides via 18 (3/8 
inch diameter) bolts. The design of the wingbox allows reusing the wingbox with different test 
panels. 
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Figure 6. Parts of the wingbox 

 

Figure 7. a) Location of test panel, and b) engineering drawing of the test panel 
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LOADING MECHANISM 

The system of two central vertical actuators and two end actuators mounted at a 45˚ angle enable 
the ABST mechanical system to apply several complex loading configurations to a primary beam 
structure. The central actuators provide torsion loading and/or normal bending gradient from zero 
to constant moment and the end actuators apply forces through the center of the specimen beam 
and provide in-plane shear and normal bending forces, as shown in figure 8. Overall, the major 
loading conditions include constant moment, cantilever shear, bending, torsion, torsion with shear, 
and torsion with bending, as shown in figure 9. The red arrows in the figure show the direction of 
the movement of the actuators. The figure shows only the tensile loading configurations but the 
ABST mechanical system is capable of applying both tensile and compressive loads to a test panel.  

 

Figure 8. ABST fixture design concept 
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Figure 9. ABST fixture loading configurations 

HYDRAULIC SYSTEM 

The ABST fixture is powered by the hydraulic system. The schematic of this hydraulic system is 
shown in figure 10. In the figure, the hydraulic components that are exclusively used with the 
ABST fixture are highlighted in orange. The hydraulic power unit (HPU) and the chiller are shared 
by other mechanical systems in the Structures and Materials Lab (SML) laboratory. The details of 
the components are explained in the following section. 

HYDRAULIC POWER UNIT (HPU) 

MTS SilentFlo 515.60 HPU is used to power the ABST fixture, as shown in figure 11. It includes 
a pump that runs on 460V, 3-phase voltage. This pump has a flow rate of 60 GPM (expandable to 
90 GPM) and working pressure of 3000 psi. Mobil DTE25 hydraulic oil is used in the HPU and is 
stored in a 320-gallon reservoir. The HPU supplies the power to the ABST fixture and three MTS 
load frames (not included in this document).   Details of the HPU are provided in reference 1. 
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Figure 10. Schematic of the hydraulic system 

 

Figure 11. Hydraulic Power Unit (HPU) 
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HYDRAULIC SERVICE MANIFOLD (HSM): The next component in the hydraulic system is 
the HSM, as shown in figure 12, which controls the low-pressure and high-pressure flow 
requirements of the system. The HSM is equipped with a filter, accumulators, and two independent 
output lines each with a high-pressure and a low-pressure line. Currently, only one output line is 
used. The operator of the MTS controller controls the HSM via MTS AeroProTM software. 

 

Figure 12. Hydraulic Service Manifold (HSM) 

FEED AND RETURN MANIFOLDS: Feed and return manifolds (see figure 13) are mechanical 
lines that allow the fluid to flow into the four actuators and bleed out the fluid from the four 
actuators, respectively. The feedline to each actuator is fitted with a mechanical valve to switch 
on/off the supply of hydraulic fluid to the servo-block of the actuator.  
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Figure 13. Feed and return manifolds 

SERVO-BLOCK: Each actuator is equipped with a servo-block that controls the flow of the fluid 
to the actuator. A servo-valve (capacity: 15 gal/min), solenoid valve, and a filter is fitted on each 
servo-block. The servo-valve controls the flow of the fluid based on the error between the target 
value and the load cells reading. The solenoid is controlled by the test operator to switch on/off 
the fluid flow. One of the servo-blocks mounted on the actuator with its components is shown in 
figure 14.  
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Figure 14. Servo-block mounted on an actuator 

CHILLER: The final component in the hydraulic system is a chiller (see figure 15), which is 
common for the whole building. The manufacturer of the chiller is Thermal Care and it is located 
outside the building. The model number of the chiller is TSER 80D and it has a 78-ton capacity. 
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Figure 15. Chiller 

CONTROL AND DAQ SYSTEMS AND MONITORING CENTER 

The test is controlled using the MTS Flex Test 100 controller. A 64-channel MTS FlexDAC 20 
data acquisition system is used to acquire the data from the strain gauges and displacement sensors. 
ARAMIS DIC system is used to capture full-field displacement and strain values and to monitor 
the progress of the test. LOREXTM surveillance system is used. All the equipment in the monitoring 
center are shown in figure 16 and the details are provided in this section. 
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Figure 16. Control and DAQ systems and monitoring center 

TEST CONTROLLER 

MTS Flex Test 100 (model #494.10), shown in Figure 17, is used as the test controller of the ABST 
fixture. The FlexTest chassis has an eight-channel servo valve MUD driver (model #494.79) for 
servovalve control; 12 Dual Digital Universal Conditioners (model #494.26) for load cells and 
stroke; two eight-channel D/A output cards (model #494.46), and one eight-channel A/D input 
card (model # 494.465). The chassis also includes an HPU interface and two HSM interfaces to 
control the pump and HSM from the workstation. The controller is also connected to a 16-channel 
high-current DI/O breakout box to switch on/off the hydraulic flow to each actuators [2].  
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Figure 17. MTS controller 

DAQ SYSTEM 

MTS FlexDAC 20 is used for strain gauge and displacement sensors data acquisition. This system 
is comprised of 64 channels to synchronize data acquisition. Both the test controller and the DAQ 
system are compatible with AeroProTM software, which brings all the test data in one place for 
convenient post-test data reduction [3]. The MTS FlexDAC 20 DAQ system is shown in figure 18. 
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Figure 18. MTS DAQ system 

TESTING SOFTWARE 

MTS AeroPro is a user-friendly and powerful structural testing software developed by MTS [4]. 
AeroPro is used to interface test controller and DAQ systems; define tests loads and test spectrum; 
calibrate load cell, strain gauges, displacement sensors; amd control HPU and HSM and interface 
the controller with other DAQ to capture reliable test data. Figure 19 shows the graphical user 
interface of the AeroPro software. 
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Figure 19. Graphical user interface of the MTS AeroPro software 

ARAMIS DIC SYSTEM 

Full-field deformation and strain data are recorded during the loading of the test panels using the 
ARAMIS three-dimensional deformation and strain DIC system. The system, using two 5-
megapixel cameras, is capable of accurately measuring full-field strain within 50 µε. Figure 20 
shows the DIC camera setup, strain distribution calculated via DIC system, and comparison of 
DIC results and strain gauge. Prior to testing, the area to be monitored by the DIC system is coated 
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with a high-contrast stochastic speckle pattern. Flat black spray paint is used to create a random 
pattern over the top of a flat white layer. The coarseness of the pattern directly affects the resolution 
of the measured strain field. Baseline images are taken using both cameras at zero loads. Deformed 
images are recorded using both cameras while under an applied load. The baseline and deformed 
images are then used to determine the full-field deformation and strain field.  

 

Figure 20. DIC system used for deformation and strain measurements 
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PORTABLE BARRIERS SURROUNDING THE ABST FIXTURE 

The ABST mechanical system and the hydraulics system are surrounded by a wall on one side and 
nine portable barriers covering the other three sides. These barriers are 8 feet high and 8 feet wide. 
The frame of the barriers is constructed using struts with 8-inch by 4-inch by 0.75-inch plywood 
fastened at the bottom and two 8-inch by 4-inch by 0.25-inch polycarbonate sheets on top of the 
plywood. The portable barrier works as a physical barrier that keeps the personnel out of the testing 
area during the testing. Figure 21 shows the portable barrier surrounding the fixture. 

 

Figure 21. Portable barrier surrounding the ABST fixture 
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DEVELOPMENT OF ABST MECHANICAL SYSTEM 

The development of the ABST mechanical system was undertaken in three steps. The first step 
was the machining of the individual parts. The parts were machined by an external vendor and 
delivered to the SML laboratory. The next step was to weld the individual parts to assemble 
individual subassemblies. The last step was to assemble the individual subassemblies to build the 
complete mechanical system. Figure 22 shows some of the parts of the ABST mechanical system 
after machining. Welding setup and some of the welded subassemblies are shown in figure 23.  

 

Figure 22. Machined parts of the ABST mechanical system 
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Figure 23. Welding setup and welded subassemblies of the ABST mechanical system 
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Assembly of the ABST mechanical system was achieved in a systematic manner. At first, the 
reaction head (SA3), wingbox (SA4) and loading head (SA5) were placed on a flat surface (base 
assembly), as shown in figure 24. Then the three subassemblies were aligned and bolted together. 
The parts of the reaction head and, similarly, the parts of the loading head were then welded, as 
shown in figure 24. When the reaction head (SA3), wingbox (SA4), and loading head (SA5) was 
assembled, the assembled parts were removed from the base assembly and the riser assembly 
(SA2) was placed on the base assembly (SA8) and bolted, as shown in figure 25. Next, the 
assembled section of reaction head (SA3), wingbox (SA4), and loading head (SA5) was placed on 
the riser assembly and bolted, as shown in figure 26. Finally, the actuators were attached to the 
mechanical system, as shown in figure 27. The final assembled and painted system is shown in 
figure 28. 

 

Figure 24. Reaction head, wingbox, and loading head are bolted together on a flat surface 
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Figure 25. Riser assembly (SA2) is bolted on top of the base assembly (SA8) 

 

Figure 26. The assembled reaction head (SA3), wingbox (SA4), and loading head (SA5) are 
bolted on top of the riser assembly (SA2)  
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Figure 27. Attaching the actuators to the ABST mechanical system  
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Figure 28. Assembled ABST mechanical system  
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ACCEPTANCE TEST 

Prior to the commencement of the test program, an acceptance test was conducted to verify the 
capability of the fixture. During the acceptance test, a 40-by-24-by-1-inch aluminum 6061 panel 
was installed on the fixture. The panel was instrumented with strain gauges and the black/white 
speckle pattern for DIC, as shown in figures 29–30. In addition to the panel, the wingbox side 
channels were also instrumented with strain gauges, as shown in figure 29. The test panel was 
subjected to three types of loading configuration constant moment (both tension and compression), 
torsion (both clockwise and counter-clockwise) and cantilever shear (only tension). The target load 
values and the actual load values for each loading configuration are provided in table 2. The tests 
were conducted by quasi-statically loading the panel up to the target loads at an increment of 10%. 

 

Figure 29. Strain gauge layout for acceptance test panel and wingbox side channels  
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Figure 30. Location of DIC speckle pattern area with respect to the test panel  

During the acceptance tests, the strain data were collected using the strain gauges and DIC 
equipment. Representative results for the constant moment, torsion, and cantilever shear loading 
configurations are shown in figures 31–33, respectively. In all three figures, section (a) shows the 
DIC sections, strain gauge location, and maximum load levels; section (b) shows the DIC results 
at 0 load and maximum load level; and section (c) shows the strains along the DIC sections and 
strain gauge results (red squares). As seen in these figures, the DIC results correlated very well 
with the strain gauge results. For the constant moment and torsion loading configurations, the test 
was able to reach the target load values. In the case of cantilever shear, the side channels failed at 
approximately 93.5% of the target load levels. The acceptance test provided the upper bounds of 
the fixture for each type of loading configuration.  
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Table 2. Target and actual load values for each configuration during the acceptance test 

Load 
Configuration 

Loading 
Type 

Test 
Status 

Maximum Load 
Actuator 1 

(lb) 
Actuator 2 

(lb) 
Actuator 3 

(lb) 
Actuator 4 

(lb) 

Constant 
Moment 

Compression 
Target 25,093 25,093 -35,493 -35,493 
Actual 25,993 25,993 -36,754 -36,754 

Tension 
Target -30,112 -30,112 42,591 42,591 
Actual -31,192 -31,192 44,105 44,105 

Cantilever Shear Tension 
Target 0 0 27,825 27,825 
Actual 0 0 26,000 26,000 

Torsion 
Clockwise 

Target -20,293 20,293 0 0 
Actual -20,293 20,293 0 0 

Counter-
Clockwise 

Target 20,293 -20,293 0 0 
Actual 20,293 -20,293 0 0 

 

Figure 31. Comparison of axial strains measured using DIC and strain gauges during 
constant moment (tension) loading configuration 
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Figure 32. Comparison of strains at 45˚ angle measured using DIC and strain gauges 
during torsion (clockwise) loading configuration 

 

Figure 33. Comparison of axial strains measured using DIC and strain gauges during 
cantilever shear (tension) loading configuration 
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APPENDIX A—ENGINEERING DRAWINGS OF THE ABST MECHANICAL SYSTEM 

 

Figure A-1. 3-D model of the riser assembly (SA2) 
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Figure A-2. Exploded view of the riser assembly (SA2) 
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Figure A-3. Drawing of the riser assembly (SA2) 
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Figure A-4. Drawing of the riser—side plate (SA2-P1) 
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Figure A-5. Drawing of the riser—end plate (SA2-P2) 
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Figure A-6. Drawing of the riser—column (SA2-P3) 
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Figure A-7. Drawing of the riser—cover (SA2-P4) 
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Figure A-8. 3-D model of the reaction head (SA3) 

 

Figure A-9. Exploded view of the reaction head (SA3) 
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Figure A-10. Drawing of the reaction head (SA3) 
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Figure A-11. Drawing of the reaction head—bottom plate (SA3-P1) 
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Figure A-12. Drawing of the reaction head—sidewall (SA3-P2) 
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Figure A-13. Drawing of the reaction head—bulkhead plate (SA3-P3) 
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Figure A-14. Drawing of the reaction head—sidewall splice plate (SA3-P4) 
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Figure A-15. Drawing of the reaction head—end clamp (SA3-P5) 
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Figure A-16. Drawing of the reaction head—splice plates (SA3-P6) 
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Figure A-17. 3-D model of the wingbox (SA4) 

 

Figure A-18. Exploded view of the wingbox (SA4) 
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Figure A-19. Drawing of the wingbox—bottom plate (SA4-P1) 
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Figure A-20. Drawing of the wingbox—sidewalls (SA4-P2) 
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Figure A-21. Drawing of the wingbox—sample test panel (SA4-P3) 
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Figure A-22. 3-D model of the loading head (SA5) 

 

Figure A-23. Exploded view of the loading head (SA5) 
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Figure A-24. Drawing of the loading head (SA5) 
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Figure A-25. Drawing of the loading head—top and bottom plates (SA5-P1) 
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Figure A-26. Drawing of the loading head—bulkhead (SA5-P2) 
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Figure A-27. Drawing of the loading head—sidewall (SA5-P3) 
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Figure A-28. Drawing of the loading head—spacer (SA5-P4) 



 

A-26 

 

Figure A-29. Drawing of the loading head—loading plate (SA5-P5) 
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Figure A-30. Drawing of the loading head—sidewall splice plate (SA5-P6) 
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Figure A-31. Drawing of the loading head—splice plate (SA5-P7) 
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Figure A-32. 3-D model of the hoodoly assembly (SA6) 

 

Figure A-33. Exploded view of the hoodoly assembly (SA6) 
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Figure A-34. Drawing of the hoodoly assembly (SA6) 
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Figure A-35. Drawing of the hoodoly (SA6-P1) 



 

A-32 

 

Figure A-36. Drawing of the hoodoly—spacer (SA6-P2) 
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Figure A-37. 3-D model of the wedge mount (SA7) 
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Figure A-38. Exploded view of the wedge mount (SA7) 
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Figure A-39. Drawing of the wedge mount (SA7) 
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Figure A-40. Drawing of the wedge mount—base (SA7-P1) 
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Figure A-41. Drawing of the wedge mount—side plates (SA7-P2) 
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Figure A-42. Drawing of the wedge mount—top plate (SA7-P3) 
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Figure A-43. 3-D model of the base assembly (SA8) 

 

Figure A-44. Exploded view of the base assembly (SA8) 
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Figure A-45. Drawing of the base assembly (SA8) 



 

A-41 

 

Figure A-46. Drawing of the base assembly—details of the side and top plates (SA8) 
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Figure A-47. Drawing of the base assembly—location of holes (SA8) 
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Figure A-48. Drawing of the base assembly—beam (SA8-P1) 
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Figure A-49. Drawing of the base assembly—end plate (SA8-P2) 
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Figure A-50. Drawing of the base assembly—horizontal top plate (SA8-P3) 
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Figure A-51. Drawing of the base assembly—horizontal bottom plate (SA8-P4) 
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